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Planetary waves in a stratified ocean of variable
depth. Part 1. Two-layer model
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23, Moscow 117218, Russia
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Linear Rossby waves in a two-layer ocean with a corrugated bottom relief (the isobaths
are straight parallel lines) are investigated. The case of a rough bottom relief (the wave
scale L is much greater than the bottom relief scale Lb) is studied analytically by the
method of multiple scales. A special numerical technique is developed to investigate
the waves over a periodic bottom relief for arbitrary relationships between L and Lb.

There are three types of modes in the two-layer case: barotropic, topographic,
and baroclinic. The structure and frequencies of the modes depend substantially on
the ratio ∆ = (∆h/h2)/(L/a) measuring the relative strength of the topography and
β-effect. Here ∆h/h2 is the typical relative height of topographic inhomogeneity and
a is the Earth’s radius. The topographic and barotropic mode frequencies depend
weakly on the stratification for small and large ∆ and increase monotonically with
increasing ∆. Both these modes become close to pure topographic modes for ∆� 1.

The dependence of the baroclinic mode on ∆ is more non-trivial. The frequency
of this mode is of the order of f0L

2
i /aL (Li is the internal Rossby scale) irrespective

of the magnitude of ∆. At the same time the spatial structure of the mode depends
strongly on ∆. With increasing ∆ the relative magnitude of motion in the lower layer
decreases. For ∆ � 1 the motion in the mode is confined mainly to the upper layer
and is very weak in the lower one. A similar concentration of mesoscale motion in an
upper layer over an abrupt bottom topography has been observed in the real ocean
many times.

Another important physical effect is the so-called ‘screening’. It implies that for
Lb < Li the small-scale component of the wave with scale Lb is confined to the lower
layer, whereas in the upper layer the scale of the motion L is always greater than or
of the order of, Li. In other words, the stratification prevents the ingress of motion
with scale smaller than the internal Rossby scale into the main thermocline.

1. Introduction
The bottom relief along with the β-effect plays a key role in the dynamics of

mesoscale motion in the ocean. The effect of topography is determined by the bottom
boundary condition, which can be written as

w = u
∂h

∂x
+ v

∂h

∂y
, z = h(x, y). (1.1)

Here x, y, and z are the eastward, northward, and vertical coordinates, respectively; u,
v, and w are the zonal, meridional, and vertical velocity components; and h = h(x, y)
is the variable oceanic depth. By virtue of (1.1), the typical value of the near-bottom
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vertical velocity generated by the flow interaction with an uneven bottom is

Wb = Un

∆h

Lb
, (1.2)

where Un is the typical velocity component normal to the isobathes and ∆h and
Lb are the characteristic height and horizontal scale of the bottom inhomogeneities,
respectively. Another limitation on the vertical velocity follows from the equation for
the vertical vorticity component Ω = (∂v/∂x)− (∂u/∂y) (Pedlosky 1979):

∂Ω

∂t
+ u

∂Ω

∂x
+ v

∂Ω

∂y
− f0

∂w

∂z
+ βv = 0, (1.3)

where t is time and f = f0 + βy the Coriolis parameter. It is easy to see from (1.3)
that the vertical velocity scale W satisfies the condition

W . max (εT , Ro, εR)
H

L
U. (1.4)

Here εT = (Tf0)
−1; Ro is the Rossby number, Ro = U/f0L; U is the horizontal

velocity scale; ε = L/a; and a is the Earth’s radius.
Here we are interested in the mesoscale quasi-geostrophic motion for which the

parameters εT , Ro, and εR , are small as compared to unity:

εT � 1, Ro� 1, εR � 1, (1.5)

and the vertical scale H is of the order of the oceanic depth and is much smaller than
the horizontal scale L:

H

L
� 1. (1.6)

Because Wb cannot exceed W , (1.2) and (1.4) imply

Un

U
. max (εT , Ro, εR)

H

∆h

Lb

L
. (1.7)

Let the relative height ∆h/H of the bottom bumps be sufficiently small so that

∆h

H
. max (εT , Ro, εR)

Lb

L
. (1.8a)

Under condition (1.8a) the right-hand side of (1.7) is of the order of or greater than
unity, i.e. the velocity components across and along the isobaths can be of the same
order, and the fluid particles move freely across the isobaths. On the other hand, if
∆h/H is sufficiently large, i.e.

∆h

H
� max (εT , Ro, εR)

Lb

L
, (1.8b)

then the right-hand side of (1.7) is smaller than unity and the near-bottom flow is
directed approximately along the isobaths. The cases (1.8a) and (1.8b) will be referred
to as the moderate and strong topography, respectively.

Conditions (1.7), (1.8a, b) essentially depend on the relationship between the topog-
raphy scale Lb and the motion scale L. In the case of smooth bottom topography,
L� Lb, condition (1.8a) can be rewritten in the form

∆h

Lb
L 6 max (εT , Ro, εR)H. (1.9)

Inequality (1.9) means that the characteristic depth difference across the scale of



Planetary waves in a stratified ocean. Part 1 117

motion (∆h/Lb)L must be sufficiently small compared to the fluid depth H for the
fluid particles to be able to move across the slope. If the bottom topography is
undulatory, i.e. L ∼ Lb, then conditions (1.7) and (1.8a, b) reduce to

Un

U
. max (εT , Ro, εR)

H

∆h
, (1.10)

∆h

H
. max (εT , Ro, εR), (1.11a)

∆h

H
� max (εT , Ro, εR). (1.11b)

In the case of a rough bottom, L � Lb, the motion can be considered as a
superposition of a large-scale component with scale L and a small-scale one with
topography scale Lb. (The classification of bottom topography depending on the
relationship between the scales L and Lb was introduced by Rhines & Bretherton
(1973)). For example, the velocity field is represented as follows:

U = UL

( x
L
,
y

L
,
z

H
, t
)

+U s

(
x

Lb
,
y

Lb
,
x

L
,
y

L
,
z

H
, t

)
. (1.12)

Here UL and U s are the large- and small-scale parts. The relationship between them
is not known á priori, but one can suppose that the small-scale bottom relief is
dynamically important if

Us & UL (1.13)

in at least the near-bottom region. Using (1.13) and the inequality L � Lb one can
readily prove the applicability of conditions (1.10) and (1.11a, b) for the case of a
rough bottom.

There is a significant distinction between the barotropic and baroclinic flows
over a strong topography. In accordance with the Taylor–Proudman theorem, the
barotropic fluid moves approximately along the isobaths from top to bottom. In a
stratified ocean this theorem is inapplicable, and therefore the regime is possible when
the strong topography forces the near-bottom fluid to flow along the isobaths but
affects weakly the upper fluid motion. In other words, the stratification is capable of
‘isolating’ the upper layer motion from the influence of the strong topography which
dominates the abyssal dynamics. We believe that this screening is realized in the real
ocean because no substantial correlation between the underlying topography and the
horizontal structure of the upper layer mesoscale motion was observed even in the
regions with very strong bottom topography. At the same time, the vertical structure
of mesoscale motion is strongly affected by the bottom relief (Wunsch 1981, 1983;
Dickson 1983). The motion over the abrupt topography is very weak in the abyssal
region and is confined predominantly to the main thermocline. Rhines (1977) revealed
an analogous effect in numerical experiments with a two-layer model. Obviously, this
vertical structure can exist only due to stratification.

The existing theory of mesoscale quasigeostrophic motion usually restricts the
consideration to the moderate topography case (1.8a) (Pedlosky 1979; Kamenkovich,
Koshlyakov & Monin 1986). However, the quasigeostrophic approximation means
only the smallness of the parameters εT , Ro, and εR and imposes no constraints on
the bottom relief.

The primary aim of the present paper is to investigate the joint effect of stratification
and bottom topography, both moderate and strong, on the quasigeostrophic oceanic
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motion. This is a complicated problem, and we restrict our consideration to the low-
frequency quasi-geostrophic modes over one-dimensional bottom topography (the
isobaths are parallel straight lines). The simplest case of uniformly sloping bottom
was investigated by Rhines (1970). He has found that two types of modes exist over a
sufficiently steep slope: the faster bottom-trapped mode and the slower mode isolated
from the bottom (with almost zero velocity at the bottom). The oscillations over a
corrugated bottom topography were considered in the pioneering work by Rhines &
Bretherton (1973), who investigated the propagation of barotropic quasi-geostrophic
oscillations over a bottom relief of this kind. The most important result of their
work is that rough corrugated relief supports propagating waves with L > Lb even in
the absence of β-effect. Volosov (1976a, b) modified this theory taking into account
nonlinear effects. The stratified case was investigated by Suarez 1971; McWilliams
1974; Volosov & Zhdanov 1980a, b, 1982, 1983; and Zhdanov 1987. Finally, the
case of random corrugated relief in the barotropic ocean was analysed by Sengupta,
Piterbarg & Reznik (1992).

All these works (except the last one) use the following constraints on the wave
parameters:

εR . εT ∼ ∆h

H
∼ Lb

L
� 1, (1.14)

where εT = σ/f0 and σ is the wave frequency. Clearly, relations (1.14) imply the
condition (1.11a) for moderate topography.

The case of a strong corrugated relief was also considered in a number of papers.
Samelson (1992, 1998) performed a numerical analysis of the eigenmodes in a two-
layer ocean with sinusoidal undulating bottom topography. The main result of his
work is the existence of a surface-intensified Rossby mode with frequency exceeding
the flat-bottom baroclinic cut-off frequency. Reznik (1986) showed that an analogous
mode occurs over a rough-bottom topography. The condition (1.11b) for strong
topography holds for the surface-intensified baroclinic modes.

In the present work we investigate low-frequency quasi-geostrophic oscillations in
a two-layer ocean with undulating or rough bottom topography for more general
relations among the parameters εR , εT , ∆h/H , and Lb/L than (1.14). Particular
attention will be given to the case of strong topography where the parameters satisfy
(1.11b).

In § 2 the model under consideration is described. After that an asymptotic theory
of Rossby waves over a rough bottom topography is developed (§§ 3, 4). In § 5 the
baroclinic modes over a strong periodic rough relief are investigated. Waves over an
arbitrary periodic relief are considered in § 6. Conclusions are stated in § 7.

2. Statement of the problem
Large-scale low-frequency oscillations with time scales of the order of several days

and larger and space scales from tens to hundreds of kilometres are governed by the
well-known equation of conservation of potential vorticity; in the case of a two-layer
ocean on the β-plane in the linear and rigid-lid approximations we have

∂

∂t

[
∆Ψ1 − α1L

−2
i (Ψ1 −Ψ2)

]
+ β

∂Ψ1

∂x
= 0, (2.1a)

∂

∂t

[
∆Ψ2 + α2L

−2
i (Ψ1 −Ψ2)

]
+ β

∂Ψ2

∂x
+
f0

h2

J(Ψ2, b) = 0. (2.1b)
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Figure 1. Isobaths (dashed lines) and coordinates.

Here Ψk , hk , k = 1, 2 are the streamfunctions and constant mean depths of the
layers, respectively; the subscripts 1 and 2 correspond to the upper and lower layers,
respectively; α1 = h2/(h1 + h2) and α2 = h1/(h1 + h2); Li = (g′h1h2)

1/2/(f2
0(h1 + h2))

1/2

is the internal Rossby scale; g′ = g∆ρ/ρ0 is the reduced gravitational acceleration; ρ0

is the mean density, ∆ρ = ρ2 − ρ1; h2t = h2 + b(x, y) is the lower layer depth; and b,
b� h2, is the depth perturbation.

Let the bottom topography be corrugated, i.e.

b = b(−x sinϕ+ y cosϕ), (2.2)

where ϕ is a constant angle between the isobaths and the zonal direction (figure
1). We now rewrite (2.1a, b) in the coordinates x′, y′ directed along and across the
isobaths, respectively (see figure 1):

x′ = x cosϕ+ y sinϕ, (2.3a)

y′ = −x sinϕ+ y cosϕ. (2.3b)

Omitting the primes we have

∂

∂t

[
∆Ψ1 − α1L

−2
i (Ψ1 −Ψ2)

]
+ β

(
∂Ψ1

∂x
cosϕ− ∂Ψ1

∂y
sinϕ

)
= 0, (2.4a)

∂

∂t

[
∆Ψ2 + α2L

−2
i (Ψ1 −Ψ2)

]
+ β

(
∂Ψ2

∂x
cosϕ− ∂Ψ2

∂y
sinϕ

)
+
f0

h2

∂b

∂y

∂Ψ2

∂x
= 0. (2.4b)

Let the motion depend harmonically on x and t, i.e.

Ψn = ψn(y) exp
[
i(kx− σt)], n = 1, 2, (2.5)

and let the seafloor perturbation have the form

b = ∆hb̂(ŷ), (2.6)

where ∆h is the characteristic value of depth fluctuations and b̂ is the non-dimensional
function of the coordinate ŷ = y/Lb. On representing Ψk in the form (2.5) in (2.4a, b)
and writing the resulting equations in non-dimensional form with Lb as lengthscale
we obtain the equations

ψ
′′
1 − iβ̂

σ̂
ψ′1 sinϕ−

(
k̂2 + α1q +

β̂k̂

σ̂
cosϕ

)
ψ1 + α1qψ2 = 0, (2.7a)
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ψ
′′
2 − iβ̂

σ̂
ψ′2 sinϕ−

(
k̂2 + α2q +

β̂k̂

σ̂
cosϕ+

k̂δ

σ̂
b̂′
)
ψ2 + α2qψ1 = 0. (2.7b)

Here

k̂ = kLb, σ̂ = σ/f0, δ = ∆h/h2, q = L2
b/L

2
i , β̂ = βLb/f0, (2.8)

and the prime denotes differentiation with respect to ŷ. The parameters (2.8) are not
arbitrary, but satisfy some conditions. We consider quasi-geostrophic motion, and
therefore the parameter σ̂ = σ/f0 is small:

σ̂ = σ/f0 � 1. (2.9a)

The scale Lb is assumed to be no greater than 50 km, and therefore

β̂ ' Lb/a = O(0.01), (2.9b)

q . 1. (2.9c)

At the same time, we assume that the typical height ∆h is much smaller than the
lower depth h2, i.e.

δ =
∆h

h2

� 1. (2.9d)

We also have

k̂ = kLb =
Lb

L
. 1 (2.9e)

because we are interested in either undulating or rough relief cases.

Our task is to investigate the eigenvalue problem (2.7a, b), i.e. given δ, q, and β̂, to

find the eigenvalues k̂ and σ̂ providing the existence of bounded solutions to (2.7a, b)
and to study the properties of the eigenfunctions.

The conditions of moderate and strong topography (1.11a, b) are written in terms

of the parameters δ, σ̂, β̂, k̂ as follows:

δ . max (σ̂, β̂/k̂), (2.10a)

δ � max (σ̂, β̂/k̂). (2.10b)

To simplify the notation, in what follows we drop the hat over the non-dimensional

parameters k̂, σ̂, β̂, ŷ, and b̂.

3. Heuristic asymptotic theory for rough relief
In the general case the eigenvalue problem (2.7a, b) is complicated, but some

analytical progress is possible for the rough relief when

k � 1 (3.1)

(also see Reznik 1986). There are four small parameters k, σ, δ, and β, and the
uncertain parameter q in (2.7a, b). In such a situation it is common practice to
prescribe some relations between small parameters to express all the parameters in
terms of one of them (as in the works by Rhines & Bretherton and Volosov & Zhdanov
cited above). However, in reality, the parameters k, σ, δ, and β are independent and
vary over a wide range, and therefore we choose an alternative analysis method for
problem (2.7a, b), which is a modification of the method of multiscale asymptotic
expansions.
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The solution is sought in the form

ψn = ψ̄n(Y ) + ψ̃n(y, Y ), n = 1, 2, (3.2)

where Y = ky is a slow coordinate. The term ψ̄n(Y ) in (3.2) describes a large-scale
wave component and ψ̃n(y, Y ) represents the small-scale component generated by
the interaction of the large-scale component with the rough relief. The small-scale
component ψ̃n is assumed to satisfy two additional conditions: (i) the mean values of
ψ̃n are zero, i.e.

〈ψ̃n〉 = 0; (3.3)

and (ii) the components ψ̄n(Y ) and ψ̃n(y, Y ) are ‘smooth’ functions of y, Y . The
averaging in (3.3) is carried out with respect to the fast coordinate y:

〈a〉 = lim
L0→∞

1

2L0

∫ L0

−L0

a dy, (3.4)

and the smoothness of the function f(y, Y ) means that its derivatives with respect to
y and/or Y are of the order of the function itself, i.e.

∂m+nf

∂ym∂Y n
= O(f), m = 0, 1, 2, . . . , n = 0, 1, 2, . . . (3.5)

irrespective of the relationships among k, σ, δ, q, and β.
The depth perturbation b(y) is assumed to be represented as a superposition of a

finite number of harmonics in the form

b =

M∑
m=−M

bm eilmy, (3.6)

where |lm| & 1, lm = −l−m, and bm = b∗−m (the asterisk denotes the complex conjugate).
Substituting (3.2) into (2.7a, b), averaging the resulting equations with respect to y,

and using (3.3) we derive

k2ψ̄1Y Y − i
βk

σ
ψ̄1Y sinϕ−

(
k2 + α1q +

βk

σ
cosϕ

)
ψ̄1 + α1qψ̄2 = 0, (3.7a)

k2ψ̄2Y Y − i
βk

σ
ψ̄2Y sinϕ−

(
k2 + α2q +

βk

σ
cosϕ

)
ψ̄2 + α2qψ̄1 − kδ

σ
〈b′ψ̃2〉 = 0. (3.7b)

The subtraction of (3.7a, b) from (2.7a, b) gives

ψ̃1yy + 2kψ̃1yY + k2ψ̃1Y Y − i
β

σ
(ψ̃1y + kψ̃1Y ) sinϕ

−
(
k2 + α1q +

βk

σ
cosϕ

)
ψ̃1 + α1qψ̃2 = 0, (3.8a)

ψ̃2yy + 2kψ̃2yY + k2ψ̃2Y Y −i
β

σ
(ψ̃2y + kψ̃2Y ) sinϕ−

(
k2 + α2q +

βk

σ
cosϕ

)
ψ̃2

+α2qψ̃1 − kδ

σ

(
b′ψ̃2 − 〈b′ψ̃2〉+ b′ψ̄2

)
= 0. (3.8b)

The parameter βk/σ in (3.7a, b) and (3.8a, b) is of the order of (Lb/a)(f0/σ)× (Lb/L),
where σ is the dimensional frequency. For mesoscale motion we have σ/f0 & 0.01, i.e.
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by virtue of (2.9b), (Lb/a)(f0/σ) = O(1). In non-dimensional form we have

β

σ
= O(1), (3.9)

and (3.1) implies
βk

σ
� 1. (3.10)

We now neglect the small terms in (3.8a, b) taking into account (3.1), (3.10):

ψ̃1yy − i
β

σ
ψ̃1y sinϕ− α1qψ̃1 + α1qψ̃2 = 0, (3.11a)

ψ̃2yy − i
β

σ
ψ̃2y sinϕ− α2qψ̃2 + α2qψ̃1 − kδ

σ

(
b′ψ̃2 − 〈b′ψ̃2〉) =

kδ

σ
b′ψ̄2. (3.11b)

The coupled systems (3.7) and (3.11) describe the large- and small-scale motion
components, respectively.

To solve the problem we introduce the following condition on the wave parameters:

d =
kδ

σ
� 1. (3.12)

By virtue of (3.12), the last term on the left-hand side of (3.11b) is small compared
to ψ̃2yy and can be neglected. The solution to the corresponding approximate system
can be found easily, and after some algebraic transformations it takes the form

ψ̃n = −i
kδ

σ
ψ̄2

∑
m

ψ̃nmeilmy, n = 1, 2, (3.13a)

ψ̃1m =
α1qbm(

l2m − (βlm/σ) sinϕ+ q
)(
lm − (β/σ) sinϕ

) , (3.13b)

ψ̃2m =

(
l2m − (βlm/σ) sinϕ+ α1q

)
bm(

l2m − (βlm/σ) sinϕ+ q
)(
lm − (β/σ) sinϕ

) . (3.13c)

Using (3.6) and (3.13c) we calculate the quantities

〈b′ψ̃2〉 = −kδ
σ
ψ̄2

∑
m

dm|bm|2, (3.14a)

dm =

(
l2m + (βlm/σ) sinϕ+ α1q

)
lm(

l2m + (βlm/σ) sinϕ+ q
)(
lm + (β/σ) sinϕ

) , (3.14b)

and rewrite (3.7b) as follows:

k2ψ̄2Y Y − i
βk

σ
ψ̄2Y sinϕ−

(
k2 + α2q +

βk

σ
cosϕ− k2δ2

σ2
Σ

)
ψ̄2 + α2qψ̄1 = 0, (3.15a)

where the notation
Σ =

∑
m

dm|bm|2 (3.15b)

is used. As a result, we have the closed system (3.7a), (3.15a) for determining ψ̄1, and
ψ̄2. The solution is sought in the form of a harmonic wave:

ψ̄n = Ane
il̄Y , n = 1, 2, (3.16)

where l̄ = O(1) and An are constant amplitudes.
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The equations for the amplitudes An have the form[
κ2 + α1q +

β

σ
(k cosϕ− l sinϕ)

]
A1 − α1qA2 = 0, (3.17a)

α2qA1 −
[
κ2 + α2q +

β

σ
(k cosϕ− l sinϕ)− k2δ2

σ2
Σ

]
A2 = 0. (3.17b)

Here l = kl̄ � 1 is the large-scale wavenumber along the direction normal to the
isobaths and κ = (k, l) is the large-scale wave-vector. The solvability condition for
(3.17a, b) gives the dispersion relation(

κ2 +
βkx

σ
+ q − δ2k2

σ2
Σ

)(
κ2 +

βkx

σ

)
− α1q

δ2k2

σ2
Σ = 0, (3.18)

where kx = k cosϕ − l sinϕ is the projection of the wave vector κ on the zonal
direction.

Note that in the case of zonal bottom relief when ϕ = 0 the coefficient dm in (3.15b)
is equal to

dm =
l2m + α1q

l2m + q
.

For the typical depths h1 and h2 equal to 1 km and 4 km, respectively, we have
α1 = h2/(h1 + h2) = 0.8. Thus the coefficient dm is close to unity, and the topographic
coefficient δ2Σ is close to the simple topographic height variance. An analogous
situation occurs for non-zonal bottom relief when ϕ 6= 0. In this case β/σ � 1 for
physically interesting modes (see below in this Section) and the coefficient dm is again
close to unity.

Equation (3.18) relates the wave-vector κ to the wave frequency σ and describes
oscillations over a wide range of parameters β, δ, and q because the only condition
for its applicability is the inequality (3.12). We note that for motions satisfying (1.14)
we have σ = O(δ), and therefore (3.12) holds in all the above-mentioned papers by
Rhines & Bretherton and Volosov & Zhdanov. In the long-wave limit L � Lb ∼ Li
relation (3.18) coincides with the dispersion relation found by Volosov & Zhdanov
(1980a), and for L ∼ Li � Lb it coincides with the dispersion relation in the paper
by Zhdanov (1987).

The structure of oscillations is characterized by the parameters

m̄ =
|A2|
|A1| , m̃ =

{〈ψ̃2
2y〉}1/2

{〈ψ̃2
1y〉}1/2 , r =

{〈ψ̃2
2y〉}1/2
κ|A2| . (3.19)

The parameter m̄ is equal to the ratio of the typical lower and upper layer large-scale
velocities, m̃ is equal to the corresponding ratio for the small-scale velocities, and the
parameter r characterizes the relation between small- and large-scale components in
the lower layer. Using (3.13), (3.17a), and (3.9) we obtain

m̄ =
|κ2 + βkx/σ + α1q|

α1q
, (3.20a)

m̃ = O
[
max

(
1, 1/q

)]
, (3.20b)

r = O

(
kδ

κσ

)
. (3.20c)
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By virtue of (3.20b), the ratio m̃−1 of the upper and lower layer small-scale velocities
does not exceed the quantity q = L2

b/L
2
i . If Lb 6 0.3Li, then q � 1, and the small-scale

component in the upper layer is much weaker (q−1 times) than that in the lower layer.
Thus, the stratification ‘screens’ the upper layer from the penetration of perturbations
with scale Lb smaller than the internal Rossby scale Li.

Obviously, the above method for deriving the approximate solution is not a rigorous
asymptotic procedure making it possible to find a solution to an arbitrary accuracy.
We only found an approximation of the lowest order that satisfies the equations with
a small discrepancy over a wide range of the parameters k, δ, β, and q. To verify
this method some special physically reasonable relations among k, δ, β, and σ were
analysed. In each case all the parameters were expressed in terms of one of them and
the corresponding solution was obtained by the standard averaging method. In all
the cases the approximation of the lowest order and the dispersion relation coincide
with the above.

4. Oscillation modes
We now consider the dispersion relation (3.18) for some particular cases.

Constant depth

Let the ocean have a constant depth, i.e. let δ = 0 in (3.18). In this case (3.18) has
two roots

σ1 = σbt = −βkx
κ2
, σ2 = σbk = − βkx

κ2 + q
(4.1)

coinciding, as could be expected, with the frequencies of barotropic (σbt) and baroclinic
(σbk) Rossby modes in the two-layer ocean of constant depth.

Barotropic case

System (2.1a, b) is transformed to the barotropic potential vorticity equation if
Li = ∞, Ψ1 = 0, and Ψ2 and h2 are assumed to be the barotropic streamfunction and
the oceanic depth, respectively. Accordingly, (3.17a) is satisfied identically and the
dispersion relation (3.18) is transformed to the dispersion relation for a barotropic
ocean with a corrugated rough bottom relief:

κ2 +
βkx

σ
− δ2k2

σ2
Σ ′ = 0, (4.2a)

where

Σ ′ =
∑
m

d′m|bm|2, d′m =
lm

lm + (β/σ) sinϕ
(4.2b)

(Rhines & Bretherton 1973; Kamenkovich & Reznik 1978).

Topographic modes: β = 0

For β = 0 (3.18) has two roots

σ1,2 = ±kδ
κ

(
κ2 + α1q

κ2 + q

)1/2

Σ1/2. (4.3)

For the oceanic case the coefficient α1 = h2/(h1 + h2) is close to 1 (α1 > 0.75), and
therefore the ratio (κ2 + α1q)/(κ2 + q) is also close to 1, and by virtue of (3.14b) and
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(4.2b) we have Σ ' Σ ′. It readily follows from (4.2a, b) and (4.3) that σ1,2 are close to
the frequencies

σ′1,2 = ±kδ
κ
Σ ′1/2 (4.4)

of topographic oscillations in a barotropic ocean of depth H2. Thus, in the absence
of β-effect the stratification affects weakly the topographic oscillation frequencies.

The parameters m̄ and r are expressed as

m̄ = 1 +
1

α1

ε, ε = κ2q−1 = O(L2
i /L

2), (4.5a)

r = O(1). (4.5b)

By virtue of (4.5a), the large-scale component in the lower layer exceeds that in the
upper layer, but the ratio of the components depends strongly on the wave scale L. In
the long-wave limit L2

i /L
2 � 1 the parameter ε is small and m̄ ' 1, i.e. the large-scale

component of the long wave is practically barotropic. For L ' Li the parameter m̄
differs substantially from 1, and the large-scale velocities in the layers also differ. The
relationship (4.5b) means that the large- and small-scale components in the lower
layer are of the same order.

Zonal isobaths: ϕ = 0

In each of the above cases one of the wave-producing factors was omitted (either
the bottom relief or the β-effect or the stratification). Consideration of the combined
effect of all these factors is simplified for ϕ = 0, when the isobaths are parallel to
the zonal direction. In this case the coefficients dm in (3.14b) do not depend on the
frequency σ and the dispersion relation (3.18) can be reduced to an algebraic cubic
equation for σ. It is convenient to rewrite this equation in terms of the variable
σ̃ = σ/(βk/κ2):

σ̃3 + p1σ̃
2 + p2σ̃ − p3 = 0, (4.6)

where

p1 =
1 + 2ε

1 + ε
, p2 =

ε

1 + ε
− α1 + ε

1 + ε
∆2, p3 =

ε∆2

1 + ε
,

∆ =
kδΣ1/2/κ

βk/κ2
, ε = κ2q−1 = O

(
L2
i

L2

)
.

The parameter σ̃ is equal to the ratio of the wave frequency to the frequency of
the barotropic Rossby wave and the parameter ∆ = O

[
(∆h/h2)/(L/a)

]
measures the

relative contributions of the topography and β-effect.
Since α1 < 1 the three roots of (4.6) are real. Therefore, contrary to the cases

considered above, three wave frequencies σ1, σ2, and σ3 correspond to each wave
vector κ = (k, l). The results of an analysis of (4.6) for L = O(Li) (ε = O(1))
are presented in table 1 in dimensional form. As is seen, the modes 1, 2, and 3
essentially differ. For ∆ � 1 (small perturbations of the bottom relief) σ1 is close to
the barotropic Rossby wave frequency, −βk/κ2 in an ocean of constant depth. The
large-scale velocity component is practically barotropic (m̄ ' 1), and the small-scale
velocities generated by the bottom relief are small compared to the large-scale ones
(∆−1 times as small in the lower layer). Thus, for ∆� 1 mode 1 practically coincides
with the barotropic Rossby mode in a constant-depth ocean and is weakly affected
by the stratification and bottom relief.
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∆� 1 ∆ ∼ 1 ∆� 1

σ1 −βk
κ2

O

(
βk

κ2

)
−f0

∆h
h2

k
κ

(
α1 + κ2 L2

i

1 + κ2 L2
i

)1/2

Σ1/2

m̄1 1 O(1), m̄1 6= 0, 1 1 + α−1
1 κ2 L2

i

r1 O(∆)� 1 O(1) O(1)

σ2 − βk

κ2 + L−2
i

O

(
βk

κ2

)
− βk

κ2 + f2
0/g

′h1

m̄2 h1/h2 O(1), m̄2 6= 0, 1 O(∆−2)� 1

r2 O(∆)� 1 O(1) O(∆)� 1

σ3
f2

0

β

(
∆h
h2

)2

Σk O

(
βk

κ2

)
+f0

∆h
h2

k
κ

(
α1 + κ2L2

i

1 + κ2 L2
i

)1/2

Σ1/2

m̄3 O(∆−2)� 1 O(1), m̄3 6= 0, 1 1 + α−1
1 κ2L2

i

r3 O(∆−1)� 1 O(1) O(1)

Table 1. Characteristics of oscillation modes; ∆ = (∆h/h2)/(L/a).

Similarly, for ∆� 1 mode 2 is close to the baroclinic Rossby mode in an ocean of
constant depth, and the effect of the bottom relief on this mode is insignificant.

Mode 3 has the lowest frequency for ∆ � 1, and it degenerates in the absence of
topography (σ3 → 0 as ∆h → 0). Thus, mode 3 exists owing to the perturbations of
the bottom topography. The motion is confined to the lower layer, and the large-scale
component is much weaker than the small-scale one.

When ∆ = O(1), all three wave-producing factors (β-effect, topography and strat-
ification) are of the same order, and modes 1, 2, 3 do not differ qualitatively. The
frequencies σi, i = 1, 2, 3 are of the order of βk/κ2, the large-scale components are
baroclinic (in the sense that the large-scale velocities in the layers are different), and
the large- and small-scale velocities are also of the same order.

The case of high bottom bumps, ∆� 1, is most interesting. In this limit modes 1,
3 are weakly affected by the stratification and are transformed into high-frequency
topographic oscillations with σ1,3 = O

(
f0(∆h/h2)

)
(see above in this Section).

Mode 2 changes in a more unusual way. As is seen from table 1, the frequency
σ2 is close to the frequency of baroclinic Rossby waves in a two-layer ocean with
infinitely deep immovable lower layer. The large-scale velocity in the upper layer
greatly exceeds (∆2-fold) the lower layer large-scale velocity. We have r = O(∆)� 1,
i.e. in the lower layer the amplitude of the small-scale velocity is larger than that of
the large-scale velocity. At the same time, the product m̄r is of the order of ∆−1 � 1,
which means that the energy of the upper layer large-scale component is ∆2 times as
large as the total energy of the small-scale part of the velocity field. In other words,
for ∆� 1 the large-scale component in mode 2 dominates the small-scale one and is
mainly confined to the upper layer.

The much weaker small-scale motion component is concentrated primarily in the
lower layer and dominates the large-scale component here. As a result, the lower-layer
fluid moves approximately along the isobaths, whereas motion in the upper layer can
be directed arbitrarily. One can say that the large-scale component ‘does not feel’
the actual rough bottom and ‘interprets’ the interface as an ‘effective’ bottom. It is
significant that the relative amplitude of small-scale motion decreases with increasing
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amplitude ∆h/h2 of bottom bumps. Similar results can be obtained in the long
wave limit L � Li (for a more detailed discussion see Reznik 1986). Note that

σ2 = O(βL) = O(f0β̂/k̂) therefore ∆� 1 means that the condition (2.10b) for strong
topography is fulfilled for mode σ2.

It readily follows from table 1 that the frequency of the surface-intensified mode σ2

closed to σ(s)
2 exceeds the flat-bottom baroclinic mode frequency σ(f)

2 given wavevector
κ = (kx, ky). Here we have

σ
(s)
2 =

−βkx
κ2 + f2

0/g
′h1

, σ
(f)
2 =

−βkx
κ2 + f2

0/g
′h1 + f2

0/g
′h2

.

The ratio σ(s)
2 /σ

(f)
2 is larger than unity and increases with decreasing κ; its maximum

is equal to (h1 + h2)/h2 (cf. Samelson 1992). One can say that mode σ2 accelerates
with increasing bottom bumps.

It is natural to call modes 1, 2, and 3 barotropic, baroclinic, and topographic modes,
respectively.

The effects described are impossible in a homogeneous fluid, where, as readily
follows from (4.2a), an increase in δ = ∆h/h2 simply results in an increase of the
oscillation frequency. This is also true for the barotropic and topographic modes 1
and 3, whose frequencies are weakly affected by stratification for small and large ∆.
The frequencies σ1,3 are O

(
f0(∆h/h2)

)
for ∆� 1, and therefore condition (2.10a) for

moderate topography is satisfied for these modes. The motions in the upper and lower
layers are of the same intensity, and the small- and large-scale lower-layer velocities
are of the same order of magnitude.

Non-zonal isobaths: ϕ 6= 0

In terms of the variable σ̃ the dispersion relation (3.18) is reduced to (4.6) with the
parameter ∆2 replaced by ∆̃2Σ, where ∆̃2 = κδk/(βkx) and Σ is given by (3.15). If

β/σ � 1, (4.7)

then the terms proportional to β/σ can be neglected in (3.14b) and (3.15), and (3.18)
practically coincides with (4.6) describing, as we saw, the barotropic, baroclinic, and
topographic modes. One can readily show that (4.7) always holds for barotropic mode
σ1, the topographic mode σ3 satisfies it for ∆ & 1, and the baroclinic mode σ2 satisfies
it if L = O(Li).

Some other types of oscillations can take place on condition that

β/σ & 1, (4.8)

when the terms proportional to β/σ cannot be neglected in (3.14b) and (3.15).
However, (4.8) together with (3.12) results in the relationship kδ � σ . β, whence

δ � L/a� 1. (4.9)

Thus, the low-frequency oscillations satisfying (4.8) can be described by the asymptotic
theory only for a very small relief inhomogeneity (by virtue of (4.9), δ . 0.01). To
analyse these modes for larger values of δ one has to use some other methods (see
§ 6).

Applicability of the asymptotic theory

The above consideration is valid only under condition (3.12), which can be verified
for each of the modes. Let the amplitude of the depth perturbations be small,
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δ � L/a. It readily follows from table 1 that for the barotropic mode 1 we have
d ' (Lb/L)[δ/(L/a)], and (3.12) is fulfilled. For the baroclinic mode 2 condition (3.12)
can be rewritten as δ � L2

i /(Lba), i.e. the relations (3.12) and δ � L/a are satisfied
for sufficiently small δ (this is also true in the long-wave limit L � Li). For the
topographic mode 3 the conditions (3.12) and δ � L/a hold simultaneously only if

Lb

L
� δ

L/a
� 1,

i.e. for a sufficiently small bottom relief scale Lb (Lb . 0.01L).
In the case of a moderate depth perturbation δ = O(L/a) we have d ' Lb/L � 1

for all the modes, and (3.12) holds.
In the case of high bottom bumps when δ � L/a we have d ' Lb/L � 1 for the

high-frequency barotropic and topographic modes, and (3.12) does not impose any
additional constraints on the topography scale Lb. However, for the low-frequency
baroclinic mode the relations (3.12) and δ � L/a hold simultaneously only if

1� δ

L/a
� Li

L

Li

Lb
.

Hence, it follows (if, as usual,�means at least 10-fold smaller) that Lb .0.01(Li/L)Li,
i.e. the asymptotic theory is valid only for very small Lb (for example, for L = 100 km
the scale Lb cannot exceed 1 km).

Thus, condition (3.12) is more restrictive for the baroclinic mode than for the
barotropic and topographic ones. To investigate the baroclinic mode for larger values
of Lb one must analyse the eigenvalue problem (2.7a, b) without condition (3.12). We
managed to do this only for the periodic bottom topography. The next section is
devoted to an asymptotic analysis of the baroclinic mode when d = (kδ)/σ = O(1)
and (3.12) does not hold.

5. Asymptotic theory for the baroclinic mode over a strong periodic rough
relief

To separate the baroclinic mode from the other modes in (2.7a, b) we set

σ = O(βL2
i /L), (5.1)

where σ and β are dimensional. Furthermore, we restrict ourselves to the case

L = O(Li), (5.2)

and therefore

q = O(k2),
βk

σ
= O(k2). (5.3)

Equations (2.7a, b) can be rewritten in the form

ψ′′1 − iβ̄2kψ
′
1 − n1k

2ψ1 + ᾱ1k
2ψ2 = 0, (5.4a)

ψ′′2 − iβ̄2kψ
′
2 − (n2k

2 + db̄)ψ2 + ᾱ2k
2ψ1 = 0, (5.4b)

where

β̄2 =
β
k σ

sinϕ = O(1), ni =
k2 + αiq + (βk/σ)cosϕ

k2
= O(1),

ᾱi =
αiq

k2
= O(1); i = 1, 2, b̄ = b′(y).

 (5.5)
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We consider the case of a strong bottom relief and therefore put

d =
kδ

σ
= O(1). (5.6)

The system (5.4a, b) contains only one small parameter k, and the solution is sought
in the following asymptotic form:

ψ1 =
1

k
ψ̄1(Y ) + ψ

(0)
1 (y, Y ) + kψ

(1)
1 (y, Y ) + . . . , (5.7a)

ψ2 =
1

k
ψ̄2(Y ) + ψ

(0)
2 (y, Y ) + kψ

(1)
2 (y, Y ) + . . . . (5.7b)

After some algebraic transformations the substitution of (5.7a, b) into (5.4a, b)
results in

ψ
(0)
1 = ψ

(0)
1 (Y ), (5.8a)

ψ̄2 = 0, (5.8b)

ψ̄1Y Y − iβ̄2ψ̄1Y − n1ψ̄1 = 0, (5.9a)

ψ
(1)
1 = ψ

(1)
1 (Y ), (5.9b)

ψ
(0)
2yy − db̄ψ(0)

2 = 0, (5.9c)

ψ
(0)
1Y Y − iβ̄2ψ

(0)
1Y − n1ψ

(0)
1 + ψ

(2)
1yy + ᾱ1ψ

(0)
2 = 0, (5.10a)

ψ
(1)
2yy − db̄ψ(1)

2 = −2ψ(0)
2yY + iβ2ψ

(0)
2y − ᾱ2ψ̄1 = K1, (5.10b)

ψ
(1)
1Y Y − iβ̄2ψ

(1)
1Y − n1ψ

(1)
1 + ψ

(3)
1yy + 2ψ(2)

1yY − iβ̄2ψ
(2)
1y + ᾱ1ψ

(1)
2 = 0, (5.11a)

ψ
(2)
2yy − db̄ψ(2)

2 = −[ψ(0)
2Y Y + 2ψ(1)

2yY − iβ̄2(ψ
(0)
2Y + ψ

(1)
2y )− n2ψ

(0)
2 + ᾱ2ψ

(0)
1

]
= K2. (5.11b)

Here the major difficulty is associated with (5.9c), (5.10b), and (5.11b), which cannot
be solved easily for an arbitrary function b̄ = b̄(y). The analysis is somewhat simplified
for a periodic bottom relief where b̄(y) is a periodic function. In this case one need
not know exact analytical expressions for ψ(0)

2 , ψ(1)
2 , ψ(2)

2 to determine the large-scale
components ψ̄1(Y ), ψ̄2(Y ) and the dispersion relation. Instead, general properties of
the ordinary differential equations with periodic coefficients (e.g. Smirnov 1974) can
be used to do that.

The behaviour of the solutions to (5.9c) depends on the characteristic Lyapunov
constant

A =
R̄1(ω) + R̄′2(ω)

2
, (5.12)

where ω is the period of b̄ and R̄1 and R̄2 are the linearly independent solutions to
(5.9c) satisfying the initial conditions

R̄1(0) = 1, R̄′1(0) = 0, R̄2(0) = 0, R̄′2(0) = 1. (5.13)

Obviously given b̄(y) the parameter A is a function of the parameter d, i.e. A = A(d).
We now consider the following possible cases.
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1. The case |A| > 1. For |A| > 1 the solutions to (5.9c) are unbounded for y → ±∞,
and two linearly independent solutions R1, R2 can be chosen in the form

R1 = eλyϕ1(y), R2 = e−λyϕ2(y), (5.14)

where λ is a real positive constant. In what follows ϕ1, ϕ2 are assumed to be some
regular periodic functions with period ω. Note that R1 and R2 can differ from R̄1 and
R̄2.

Since (5.9c) has no non-zero bounded solution, it follows that

ψ
(0)
2 = 0. (5.15a)

One can readily conclude from (5.8a), (5.10a), and (5.15a) that

ψ
(0)
1Y Y − iβ̄2ψ

(0)
1Y − n1ψ

(0)
1 = 0, (5.15b)

ψ
(2)
1 = ψ

(2)
1 (Y ). (5.15c)

By virtue of (5.15a), the solution to (5.10b) takes the form

ψ
(1)
2 = −ᾱ2ψ̄1

∫ ∞
0

e−λs
[
ϕ1(y)ϕ2(y + s) + ϕ2(y)ϕ1(y − s)]ds; (5.15d)

we will assume that the Wronskian of R1 and R2 is equal to 1, i.e.

W = R1R
′
2 − R′1R2 = 1. (5.16)

Equations (5.15a, d) indicate that the order of the large-scale velocity in the lower
layer does not exceed O(k2), whereas in the upper layer it is of the order of 1. By
virtue of (5.8a), (5.9b), and (5.15c), the small-scale velocity in the upper layer does not
exceed O(k3), whereas in the lower layer it is O(k). Thus, to within small values the
motion is large scale and is confined to the upper layer. As before if the large-scale
component is a plane wave, i.e. ψ̄1 is proportional to eilY , then one can obtain from
(5.9a) the following (dimensional) dispersion relation:

σ =
−βkx

k2
x + k2

y + f2
0/g

′h1

. (5.17)

Here kx and ky are the wave-vector components along the zonal and meridional
directions, respectively. As could be expected, (5.17) coincides with the dispersion
relation for Rossby waves in a two-layer ocean with an infinitely deep immovable
lower layer.

So, we come to the conclusion that in the case |A| > 1 the mode is close to the
baroclinic mode considered in § 4 for ∆� 1.

2. The cases |A| < 1 and A = −1. If |A| < 1, then all solutions to (5.9c) are
bounded for −∞ 6 y 6 ∞, and the pair of linearly independent solutions takes the
form

R1 = e2iπαy/ωϕ1(y), R2 = e−2iπαy/ωϕ2(y), (5.18)

where α is real, α 6= 0, 1. For A = −1 we have α = 1/2 and ϕ2(y) = ϕ∗1(y) in (5.18).
Respectively, the solution to (5.9c) can be written as

ψ
(0)
2 = C

(0)
1 (Y )R1 + C

(0)
2 (Y )R2, (5.19)

where and C (0)
1 and C (0)

2 are arbitrary functions.
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To obtain ψ(0)
1 , ψ(0)

2 we use the equations

〈R1〉 = 〈R2〉 = 0 (5.20)

which simply follows from the formula (A 3) of Appendix A. On averaging (5.10a)
with respect to y and applying (5.20) we derive

ψ
(0)
1Y Y − iβ̄2ψ

(0)
1Y − n1ψ

(0)
1 = 0, (5.21a)

ψ
(2)
1yy = −ᾱ1ψ

(0)
2 . (5.21b)

The functions C (0)
1 (Y ) and C (0)

2 (Y ) are determined from the condition of bounded-

ness of ψ(1)
2 for −∞ 6 y 6 ∞. This condition is satisfied if and only if the right-hand

side of (5.10b) is orthogonal to R1 and R2, i.e.

〈K1R1〉 = 〈K1R2〉 = 0. (5.22)

Taking into account (A 3), (5.19), and (5.16) we conclude from (5.22) that

C
(0)
k = M

(0)
k e(iβ̄/2)Y , k = 1, 2, (5.23)

where M(0)
k , k = 1, 2, are some constants.

In view of (5.23), the solution ψ(1)
2 to (5.10b) can be written as

ψ
(1)
2 = −ᾱ2ψ̄1F0(y) + C

(1)
1 (Y )R1 + C

(1)
2 (Y )R2 (5.24)

where C (1)
1 , C

(1)
2 are arbitrary functions. The function F0 is a particular solution of

the equation

F ′′ − db̄F = 1 (5.25)

and has the form

F = −R1

∫
R2(y

′) dy′ + R2

∫
R1(y

′) dy′. (5.26)

One can show (see Appendix A for details) that the functions C (1)
1 (Y ) and C (1)

2 (Y )

are bounded in Y if and only if M(0)
1 and M(0)

2 are equal to zero, i.e.

ψ
(0)
2 = 0, (5.27)

and, by virtue of (5.21b),

ψ
(2)
1 = ψ

(2)
1 (Y ). (5.28)

Thus in the cases under consideration the structure of the mode is identical to that
for |A| > 1.

3. The case A = 1. If A = 1 the solutions R1 and R2 can be represented as

R1 = ϕ1(y), R2 = ayϕ1(y) + ϕ2(y), (5.29)

i.e. one solution is bounded and the other is unbounded. A detailed analysis of this
case is given in Appendix A, here only the qualitative results are presented.

The structure of the motion depends strongly on the parameter 〈R1〉. If 〈R1〉 = 0
then the large-scale motion in the upper layer described by (5.9a) and the dispersion
relation (5.17) remain unchanged. At the same time, motion in the lower layer is
intensified in comparison with the foregoing cases: here the small-scale velocity is of
the order of the large-scale velocity in the upper layer.

If 〈R1〉 6= 0 the motion has a completely different structure in comparison with the



132 G. M. Reznik and T. B. Tsybaneva

d

A (d )

+1

d ′
–1 d″

–1

d ′
0

d″
0=0 d ′

1 d″
1

d ′
2 d″

2

–1

Figure 2. Schematic representation of the dependence of the Lyapunov constant A on
the parameter d in the Hill equation (5.9c).

above cases. The function ψ̄1(Y ) in (5.7a) vanishes and, therefore, the upper layer
velocity amplitude is of the order of k. In the lower layer the large-scale component
is also of the order of k and the small scale component is of the order of 1. Thus,
the motion is mainly small scale and confined to the lower layer. The corresponding
dispersion relation differs strongly from (5.17).

The above analysis can be briefly summarized as follows. For A 6= 1 the motion
in the mode is predominantly large scale and confined mainly to the upper layer;
the lower layer velocity is small scale and much smaller in magnitude than the upper
layer velocity. Correspondingly, the dispersion relation in this case is given by (5.17)
coinciding with the dispersion relation for Rossby waves in a two-layer ocean with
an infinitely deep immovable lower layer.

In contrast to this, if A = 1 then the small-scale motion in the lower layer is
intensified so that the lower layer small-scale velocity is of the order or larger than
the large-scale components in the layers. The dispersion relation can strongly differ
from (5.17) in this case.

We now consider the properties of the function A(d) given the function b̄(y) in
(5.9c) (Smirnov 1974).

(i) Each of the equations A(d) = 1 and A(d) = −1 has a countable set of real
roots.

(ii) These roots can be indexed so that

. . . , d′−1 6 d
′′
−1 < d′0 6 d

′′
0 = 0 < d′1 6 d

′′
1 < d′2 6 d

′′
2 < d′3 6 d

′′
3 . . . ,

where . . . , d′0, d′′0 = 0, d′2, d′′2, d′4, d′′4, . . . are the roots of the equation A(d) = 1 and . . . ,
d′−1, d

′′−1, d
′
1, d

′′
1, d′3, d′′3, . . . are the roots of the equation A(d) = −1. Here . . . , (d′′0 , d′1),

(d′′1 , d′2), (d′′2 , d′3), . . . are the intervals of boundedness (|A(d)| < 1 in these intervals) and
. . . , (d′−1, d

′′−1), (d′0, d′′0), (d′1, d′′1), . . . are the intervals of unboundedness (|A(d)| > 1 in
them).

(iii) The function A(d) is monotonic in the intervals of boundedness (A′(d) > 0 or
A′(d) < 0).

Dependence A versus d is presented in figure 2.
It is convenient to state the results in terms of the phase velocity

cx =
σ

k
(5.30)
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along the isobaths. The dependence of A on d leads to the conclusion that cases 1
and 2 are realized for almost all cx, and therefore the motion under consideration is
mainly large scale and is confined to the upper layer of the ocean. The exceptions are
the following values of phase velocity cx:

cx =
δ

d′n
or cx =

δ

d′′n
, n = ±2m. (5.31)

A kind of resonance appears for such cx when a relatively weak large-scale wave
generates a small-scale velocity field with an amplitude much greater than that of
the large-scale component. However, this effect seems to be unimportant dynamically
because only a countable set of cx satisfies (5.31), whereas a continuum of cx does not
satisfy (5.31). Moreover, the distance between the consecutive values of d satisfying
(5.31) is of the order of 1, and d is of the order of 1 here (see (5.6)).

Thus, the characteristics of the baroclinic mode over a strong bottom relief described
in § 4 for d� 1 are realized also in the case d = O(1). In other words, the main result
of this Section is that for the case of a strong periodic bottom relief when (5.6) is
fulfilled the baroclinic mode is closed to the Rossby wave in a two-layer ocean with
an infinitely deep lower layer. This result does not depend on the exact form of the
topography, only its periodicity is of importance.

We now evaluate the characteristic scales of motion and bottom topography for
which the above analysis is valid. Let the scale L be of the order of 100 km, then for
k = 0.1 the horizontal bottom topography scale Lb = 10 km. By virtue of (5.17), we
have σ = O(0.01), and therefore the condition d = O(1) implies δ = O(0.1). For the
typical depth of the lower layer equal to 4 km the characteristic height of the bottom
inhomogeneities is equal to 400 m. Clearly, these scales correlate well with those of
the actual bottom relief and mesoscale motion in the ocean.

The above asymptotic consideration relates only to the case of a rough-bottomed
topography. If the bottom relief is not rough and the non-dimensional wavenumber

k̂ in (2.7a, b) is not necessarily small, then the eigenvalue problem (2.7a, b) becomes
much more complicated because asymptotic methods cannot be applied in this case.
However, the periodic bottom relief can be analysed using the results of the general
theory of ordinary differential equations with periodic coefficients. The investigation
technique and the results for a sinusoidal bottom topography are presented in the
next Section.

6. Waves over a sinusoidal bottom relief
To analyse the eigenvalue problem (2.7a, b) for the case of a periodic bottom relief

with period ω we rewrite the system in the form of the vector equation

dx

dy
= A(y)x, (6.1)

for the four-dimensional vector

x =

 ψ1

ψ2

ψ3

ψ4

 , ψ3 = ψ′1, ψ4 = ψ′2, (6.2)
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where A(y) is a periodic 4×4 matrix with period ω. Using the investigation technique
presented in Appendix B we can find the k, σ, δ, and q for which the system (6.1) has
bounded solution, and calculate these solutions.

Each of these solutions can be represented as

x(y) = eilyf(y), (6.3)

where f(y) is a periodic four-dimensional vector and l is a constant. Knowing l and
f(y) we can determine the large- and small-scale components of motion proportional
to

x̄(y) = eilyf̄ =

 ψ̄1

...
ψ̄4

 (6.4a)

and

x̃(y) = eilyf̃ =

 ψ̃1

...
ψ̃4

 , (6.4b)

respectively. Here we have

f̄ =
1

ω

∫ ω

0

f(y) dy; f̃ = f(y)− f̄, (6.5)

x = x̄+ x̃. (6.6)

Using (6.4a, b) one can calculate the coefficients (3.19) characterizing the vertical
structure of the motion and the relationship between the large- and small-scale
components. Of course, this representation makes sense only when l � 1; otherwise
the large- and small-scale components are of the same spatial scale.

Oscillations in a barotropic ocean can be investigated in a similar manner if we
equate α1 and α2 in (2.7a, b) to zero. In this case equations (2.7a) and (2.7b) decouple
and (2.7b) is transformed into an equation describing waves in a barotropic ocean of
variable depth in the rigid-lid approximation (e.g. see Kamenkovich & Reznik 1978).
To study these waves one should find bounded solutions ψ1 and ψ2 to system (2.7a, b)
with α1 = α2 = 0 and discard the ‘parasitic’ mode ψ1.

The analysis was carried out for a cosinusoidal bottom relief, i.e. b̂′ = sin y in (2.7b).
The following parameters were chosen: f0 = 7 × 10−5 s−1, β = 1.8 × 10−13 sm−1 s−1,
α1 = 0.75, α2 = 0.25, and Li = 43 km. The results can be stated conveniently in
terms of the wavelength λx = 2π/k and the period T = 2π/σ. The calculations were
performed for a rectangular grid covering the domain −1500 km 6 λx 6 1500 km,
20 days 6 T 6 400 days with steps ∆λx = 100 km and ∆T = 20 days; obviously, the
characteristic scales of the observed mesoscale eddies lie in these ranges. The results
are demonstrated in figures 3–6; each symbol (cross or dot) designates the ‘allowable’
values of T and λx for which bounded solutions to (2.7a, b) exist.

One can readily see that not all values of T and λx are allowable. In the barotropic
case (figure 3) there exist two domains I and II corresponding to the topographic
and barotropic modes, respectively. In the two-layer case region III of baroclinic
oscillations is added to regions I and II (figures 4, 5). For a given δ with increasing
bottom topography scale Lb all allowable domains of oscillations decrease, and
domains I and II of topographic and barotropic modes degenerate much more
quickly than domain III of baroclinic modes. At the same time, all the allowable
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Figure 3. The domains of allowable periods T and wavelengths λx for the barotropic ocean;
δ = 0.1, Lb = 4 km, ϕ = 0.
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Figure 4. The same as figure 3 except for the two-layer ocean; δ = 0.1. Different symbols
characterize level of the relative error M of the asymptotic wavenumber (6.12): dots correspond to
M 6 20%. (a) Lb = 4 km; (b) Lb = 10 km; (c) Lb = 40 km; (d) Lb = 100 km.

domains increase with decreasing relative height of the bottom inhomogeneities (see
figures 4, 5 and 6). Note that the subdivision of the (T , λx) plane into regions of
barotropic, topographic, and baroclinic modes is clearly seen only in the case of zonal
isobaths; if the isobaths are not parallel to the zonal direction, then the barotropic
and topographic domains are not separated well (figure 6). It is also interesting that,
generally, the number of the allowable T , λx is larger in the case of non-zonal isobaths
(compare figures 4, 5 and 6).

To check the applicability of the asymptotic dispersion relation (3.18) we rewrite it
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Figure 5. The same as figure 4 except for δ = 0.05. (a) Lb = 4 km; (b) Lb = 10 km;
(c) Lb = 40 km.

in the form of the dependence of the wavenumber l on the parameters k and σ:

la =
β

2σ
sinϕ±

(
β2

4σ2
sin2 ϕ− k2 − βk

σ
cosϕ+ B(k, σ)

)1/2

, (6.7a)

where

B = B(k, σ) =
1

2

(
δ2k2

σ2
Σ − q

)
±
(

1

4

(
δ2k2

σ2
Σ − q

)2

+ α1q
δ2k2

σ2
Σ

)1/2

. (6.7b)

The subscript a means that the wavenumber la is calculated by the asymptotic theory.
Given k̄ and σ, we calculate the ‘asymptotic’ wavenumber la from (6.7) and the exact
value lT = l from (6.3), and then the parameter M,

M =
|lT − la|
lT

,

which can be interpreted as the error of the asymptotic expression (6.7). One can see
from figures 4, 5, and 6 that for moderate Lb (4 km, 10 km) the dispersion relation
(6.7) holds to within small errors in the major part of the (T , λx)-domain, especially
for the baroclinic modes, even for sufficiently large d = kδ/σ when the condition
(3.12) is violated. With increasing Lb the error M increases and becomes large for
Lb = 40 km, 100 km (although for these values of Lb there also exist T and λx for
which (6.7) is satisfied with a good accuracy).

We also calculated the coefficients (3.19) for the exact and asymptotic solutions and
compared them. Using (3.13) for the cosinusoidal relief we obtain for the asymptotic



Planetary waves in a stratified ocean. Part 1 137

T (days) 500

400

300

200

100

0–1000–2000 1000 2000
kx (km)

0–1000–2000 1000 2000
kx (km)

0–1000–2000 1000 2000

kx (km)
0–1000–2000 1000 2000

kx (km)

(b) (c)

(a) (d)

T (days) 500

400

300

200

100

T (days) 500

400

300

200

100

T (days) 500

400

300

200

100

Figure 6. The same as figure 4 except for ϕ 6= 0. (a) Lb = 4 km, ϕ = 45◦; (b) Lb = 4 km, ϕ = 90◦;
(c) Lb = 10 km, ϕ = 45◦; (d) Lb = 10 km, ϕ = 90◦.

solution:

m̃ = 1 +
1

α1q
, r =

kδ

κσ

1√
2

1 + α1q

1 + q
; (6.8)

the parameter m̄ is given by (3.20a). The coefficients (3.19) for different values of Lb
and δ are shown in table 2 for the topographic, barotropic and baroclinic modes. One
can see from table 2 and figures 4 and 5 that the vertical structure of the modes is
adequately described by the approximate coefficients (3.20a) and (6.8) even in the case
when kδ/σ & 1 and the condition (3.12) does not hold. We emphasize that the most
interesting and important effects, namely the ‘screening’ effect (the concentration of
the small-scale component generated by the relief with scale Lb < Li in the lower
layer) and the ‘displacement’ effect (the baroclinic mode over a strong relief is confined
mainly to the upper layer), also occur for kδ/σ & 1 even when the wave scale L
slightly exceeds the relief scale Lb (for example, see the case Lb = 40 km, δ = 0.1,
λx = −400 km, T = 180 days). The ‘displacement’ effect can exist even if the scale L
is equal to Lb. For example, as can be seen from table 2, in the case Lb = 100 km,
δ = 0.1, λx = −400 km, T = 200 days the motion with scale Lb dominates in the
mode and the relative intensity of motion in the layers is determined primarily by the
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parameter m̃T . This parameter is equal to 0.3, i.e. the kinetic energy level in the upper
layer is approximately ten times as large as that in the lower one.

7. Discussion and conclusions
Motivation of this work was to gain an understanding of the joint effect of stratifica-

tion, β-effect, and bottom topography on the quasi-geostrophic oceanic motion. Most
of previous works restricted their consideration to the case of moderate topography
when

∆h

H
. max (εT , Ro, εR). (7.1)

However this condition certainly does not hold in the regions with abrupt topography
where the condition

∆h

H
� max (εT , Ro, εR) (7.2)

of strong topography is satisfied for the low-frequency mesoscale motion.
To study the problem in the simplest form we have investigated linear Rossby

waves in a two-layer ocean with a corrugated bottom relief (the isobaths are parallel
straight lines). The asymptotic theory developed for the rough relief is valid over
a wide range of the parameters Lb/L, L/a, Lb/Li, and ∆h/h2, and allows both the
moderate and strong topography cases to be described. As could be expected, the
combined effect of the stratification and bottom topography results in an increase
in the number of possible wave modes compared to the cases of two-layer ocean
of constant depth or a barotropic ocean of variable depth. There exist three types
of modes: barotropic, topographic and baroclinic. As ∆h → 0 the barotropic and
baroclinic modes are transformed into the ‘usual’ barotropic and baroclinic Rossby
modes, respectively. At the same time the topographic mode degenerates in the limit
of constant depth because its frequency tends to zero for ∆h→ 0.

The structure and frequencies of the modes depend substantially on the ratio ∆ =
(∆h/h2)/(L/a) measuring the relative strength of the topography and the β-effect. The
topographic and barotropic modes are weakly affected by the stratification, and their
frequencies increase monotonically with increasing ∆. For ∆ � 1 these frequencies
are O

(
f0(∆h/h2)

)
, and therefore the condition (1.11a) of moderate topography is

satisfied for the barotropic and topographic modes even for a large height of the
relief inhomogenity. Both the modes become close to pure topographic modes for
large ∆h/h2 when ∆� 1.

The dependence of the baroclinic mode on ∆ is more non-trivial. The frequency of
this mode is of the order of βkL2

i irrespective of the height of the relief inhomogeneity.
At the same time, the spatial structure of the mode strongly depends on ∆h/h2. With
increasing ∆ the relative magnitude of the motion in the lower layer decreases. If the
relief inhomogeneity is large so that ∆� 1, then the motion in the lower layer is very
weak and the baroclinic mode is close to a Rossby wave in a two-layer ocean with
an infinitely deep immovable lower layer.

The case ∆ � 1 or, alternatively, ∆h/h2 � L/a coincides for this mode with the
condition (1.11b) of the strong bottom relief because βkL2

i 6 f0(L/a) and therefore
εT 6 εR in (1.11b). Thus, the baroclinic mode is predominantly large scale and is
confined to the upper layer over the strong bottom relief. The much weaker small-scale
component of motion is concentrated mainly in the lower layer and dominates there
over the large scale component. As a result, the lower layer fluid moves approximately
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Relief length Period

parameters Mode (km) (day) m̄t m̄a m̃t m̃a rt ra d = kδ/σ

Lb = 4 km, barotropic −400 20 1.97 1.97 150.9 155.1 0.9879 0.9993 0.121
δ = 0.1 baroclinic −400 180 0.0033 0.0035 122.6 155.1 12.57 11.27 1.09

topographic 400 20 1.96 1.96 154.7 155.1 1.21 1.23 0.121

Lb = 10 km, barotropic −400 20 2.01 2.01 21.93 25.65 0.99 1.06 0.3
δ = 0.1 baroclinic −400 180 0.0015 0.0016 27.59 25.65 36.4 12.16 2.72

topographic 400 20 1.94 1.94 25.45 25.65 1.21 1.35 0.3

Lb = 40 km, baroclinic −400 180 0.063 0.063 5.42 0.54 8.38 35.6 10.9
δ = 0.1 baroclinic −400 200 0.00047 0.0008 0.57 25.4 396.9 337.3 12.1

Lb = 100 km, baroclinic −400 200 0.33 0.32 0.3 1.25 18.52 438.1 30.24
δ = 0.1

Lb = 4 km, barotropic −400 40 1.976 1.975 149.0 155.1 0.916 0.923 0.121
δ = 0.05 barotropic −400 140 24.06 24.04 62.79 155.1 1.03 0.764 0.42

baroclinic −400 180 0.014 0.014 143.2 155.1 5.8 5.67 0.54
topographic 400 60 3.33 3.33 147 155.1 1.21 1.21 0.18

Lb = 10 km, barotropic −400 40 2.05 2.05 20.39 25.65 0.93 0.97 0.3
δ = 0.05 baroclinic −400 180 0.012 0.012 24.56 25.65 7.2 6.1 1.35

topographic 400 60 3.59 3.59 19.11 25.65 1.18 1.23 0.45

Lb = 40 km, baroclinic −400 180 0.019 0.019 3.65 2.54 13.13 16.8 5.44
δ = 0.05

Table 2. The parameters characterizing the vertical and horizontal structure of the modes. Subscripts a and t denote the parameters calculated by the
asymptotic theory and numerically, respectively.
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along the isobaths, whereas the motion in the upper layer can be directed arbitrarily.
One can say that the baroclinic mode over a strong bottom relief does not ‘feel’ the
actual uneven bottom and ‘interprets’ the interface between the layers as a bottom.

It is of importance that the surface intensification of the baroclinic mode with
increase of the relief height is accompanied by some increase of the mode frequency
(see Samelson 1992, 1998). An analogous effect takes place in a continuously strat-
ified ocean (Bobrovich & Reznik 1999). Note that the observed ‘fast’ Rossby waves
propagation (Chelton & Shlax 1996) could be due to the topographic alteration of
the lowest baroclinic mode.

The asymptotic theory was developed under the assumption that the horizontal
scale Lb of the relief inhomogeneity does not exceed the Rossby internal scale Li.
To verify and generalize these results we developed a method making it possible
to investigate oscillations over an arbitrary periodic bottom relief. The calculation
demonstrates a decrease in the number of possible oscillations with increasing ∆h/h2

and especially with increasing horizontal bottom scale Lb. For example, the barotropic
and topographic modes are almost absent for Lb > Li; the low-frequency baroclinic
modes are more ‘persistent’: they exist for any Lb. The effect of concentration of
motion in the upper layer with increasing ∆h/h2 (the ‘displacement’ effect) also occurs
for Lb > Li although this concentration can be less strong than in the case of a rough
relief with Lb � Li. It is significant that a similar concentration of the mesoscale
motion in the upper layer over an abrupt bottom topography has been observed
many times in the real ocean (e.g. see Wunsch 1981, 1983; Dickson 1983).

Another important physical effect is the so-called ‘screening’ effect. It implies that
for Lb < Li the small-scale component of the wave is confined to the lower layer,
whereas in the upper layer the scale of motion L is always greater than or of the order
of Li (also see McWilliams 1974; Zhdanov 1987). In other words, the stratification
prevents the ingress of motion with scale smaller than the internal Rossby scale into
the main thermocline.

Obviously the above theory becomes inapplicable for the cases of a random and/or
two-dimensional bottom topography. The analyses by Sengupta et al. (1992); Rhines
& Bretherton (1973) show that such topographies cannot support the propagation
of large-scale quasi-geostrophic oscillations in the barotropic ocean; instead a lo-
calization in the horizontal of the waves occurs. As we have seen the stratification
depresses the effect of topography on the upper layer; therefore in stratified fluid
the localization of the upper layer motion could be substantially weaker than in
the barotropic case. Some numerical simulations for a stratified ocean with a broad
spectrum topography are required to gain more understanding of this problem.

We have considered only the simplest two-layer stratification. Generalization to the
continuously stratified case is reported in a companion paper (Bobrovich & Reznik
1999).

This work was supported by grants from the Russian Foundation of Basic Research
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very helpful comments on the manuscript and M. V. Dmitrieva and L. I. Voronovich
for the help in preparation of this manuscript.
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Appendix A
Let us consider the function

Q = e2iπαy/ωp(y), (A 1)

where p(y) is a regular periodic function with period ω; α is real,

α 6= 0, 1. (A 2)

The condition (A 2) means that the Fourier series for p(y) does not contain the
harmonic e2iπαy/ω i.e.

〈Q〉 = 〈e2iπαy/ωp(y)〉 = 0. (A 3)

To derive (5.27) we use the Fourier series for R1 and R2 to calculate the antideriva-
tives in (5.26):

R1 =
∑
m

A
(m)
1 e2πi(m+α)y/ω, R2 =

∑
n

A
(n)
2 e2πi(n−α)y/ω. (A 4)

Substituting (A 4) into (5.26) we obtain after some simple algebra a particular solution
to (5.25):

F0 =
ω

2πi

∑
m,n

A
(m)
1 A

(n)
2 (n− m− 2α)

(m+ α)(n− α) e2πi(m+n)y/ω, (A 5)

which is a periodic function with period ω.
The functions C (1)

1 (Y ) and C (1)
2 (Y ) in (5.24) are determined from the orthogonality

of the right-hand side of (5.11b) to R1 and R2:

〈K2R1〉 = 〈K2R2〉 = 0. (A 6)

Taking into account (5.8a), (5.16), (5.19), (5.23), (A 3), and (A 5) we derive from (A 6)
equations for C (1)

1 (Y ) and C (1)
2 (Y ):

C
(1)
1Y − i

β̄2

2
C

(1)
1 =

(
β̄2

2

4
− n2

)(
M

(0)
1 〈R1R2〉+M

(0)
2 〈R2

2〉
)
ei(β̄2/2)Y , (A 7)

C
(1)
2Y − i

β̄2

2
C

(1)
2 = −

(
β̄2

2

4
− n2

)(
M

(0)
1 〈R2

1〉+M
(0)
2 〈R1R2〉)ei(β̄2/2)Y . (A 8)

For non-zero M
(0)
1 and M

(0)
2 the functions C (1)

1 (Y ) and C
(1)
2 (Y ) are bounded in Y if

and only if (
β̄2

2

4
− n2

)2 (〈R2
1〉〈R2

2〉 − 〈R1R2〉2) = 0. (A 9)

It follows from the boundedness of ψ(0)
1 for −∞ < Y < +∞ that β̄2

2/4 − n2 > 0
(see (5.21a)). Furthermore, assuming that R2 = R∗1 and using the Cauchy–Holder
inequality one can show that 〈R2

1〉〈R2
2〉 − 〈R1R2〉2 < 0. Thus, (A 9) does not hold, and

therefore M(0)
1 and M(0)

2 are equal to zero, whence (5.27) follows.
In the case A = 1 the bounded solution to (5.9c) has the form

ψ
(0)
2 = C

(0)
1 (Y )R1. (A 10)

Let us assume that in (5.29)

〈R1〉 = 0. (A 11)
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Using (A 10), (A 11) one can readily obtain from (5.10a) the equations (5.21a, b) for
ψ

(0)
1 , ψ(2)

1 . Equation (5.10b) can be written as

ψ
(1)
2yy − db̄ψ(1)

2 = −(2C (0)
1Y − iβ̄2C

(0)
1 )R′1 − ᾱ2ψ̄1, (A 12)

whence we find ψ(1)
2 :

ψ
(1)
2 =

1

2a
(2C (0)

1Y − iβ̄2C
(0)
1 )ϕ2(y)− ᾱ2ψ̄1F2(y) + C

(1)
1 (Y )R1. (A 13)

Here C (1)
1 (Y ) is an arbitrary function, F2 is a periodic function with period ω,

F2 = −aω
2

4π2

∑
m,k

A
(m)
1 A

(k)
1

k2
e2πi(m+k)y/ω +

ω

2πi

∑
m,n

(n− m)A(m)
1 A

(n)
2

mn
e2πi(m+n)y/ω, (A 14)

and A(m)
1 , A(n)

2 are the coefficients in the Fourier series

ϕ1(y) =
∑
m

A
(m)
1 e2πimy/ω, ϕ2(y) =

∑
n

A
(n)
2 e2πiny/ω. (A 15)

Requiring the orthogonality of the right-hand side of (5.11b) to R1 and using (A 13)
and the simple relation (following from (5.16) and (5.29)

〈R1ϕ
′
2〉 = 1

2

(
1− a〈R2

1〉
)

(A 16)

we obtain the equation

C
(0)
1Y Y − iβ̄2C

(0)
1Y −

[
β̄2

2

4
+ a

(
n2 − β̄2

2

4

)
〈R2

1〉
]
C

(0)
1 = −ᾱ2a〈F2R

′
1〉(2ψ̄1Y − iβ̄2ψ̄1) (A 17)

relating the coefficient C (0)
1 (Y ) to the large-scale upper layer component ψ̄1(Y ).

In the case A = 1,

〈R1〉 6= 0 (A 18)

we have from (A 10) and (5.10a)

ψ
(0)
1Y Y − iβ̄2ψ

(0)
1Y − n1ψ

(0)
1 = −ᾱ1C

(0)
1 〈R1〉, (A 19)

ψ
(2)
1yy = −ᾱ1C

(0)
1 (R1 − 〈R1〉). (A 20)

One can readily show that in (5.10b)

〈K1R1〉 = −ᾱ2ψ̄1〈R1〉 6= 0, (A 21)

and, therefore, for ψ(1)
2 to be bounded the lowest-order term ψ̄1 must vanish:

ψ̄1 = 0. (A 22)

The solution to (5.10b) is given by the equation

ψ
(1)
2 =

1

2a
(2C (0)

1Y − iβ̄2C
(0)
1 )ϕ2(y) + C

(1)
1 (Y )R1. (A 23)

Using (5.8a), (A 10), and (A 23) one can reduce the orthogonality of K2 to R1 in
(5.11b) to the equation

C
(0)
1Y Y − iβ̄2C

(0)
1Y −

[
β̄2

2

4
+ a

(
n2 − β̄2

2

4

)
〈R2

1〉
]
C

(0)
1 = −ᾱ2〈R1〉ψ(0)

1 , (A 24)
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relating the coefficient C (0)
1 (Y ) to the lowest-order large-scale layer component ψ(0)

1 (Y ).
The dispersion relation in this case follows from the existence of a solution to (A 19),
(A 24) proportional to eilY . Obviously, the dispersion relation has nothing in common
with the dispersion relation (5.17).

Appendix B
The investigation technique is based on the fact (e.g. Yakubovich & Starzhinsky

1972) that the vector equation

dx

dy
= A(y)x, (B 1)

where

x =

 ψ1

...
ψn


is an n-dimensional vector and A(y) a periodic n × n matrix with period ω, has a
fundamental system of linearly independent solutions of the form

xν = eανyfν(y), ν = 1, . . . , n. (B 2)

Here αν = 1/ω ln ρν; ρν , ν = 1, . . . , n, are the multiplicators of (B 1), which are the
eigenvalues of the monodromy matrix. In turn, they can be found from the matrix
equation for the n× n matrix X (y):

dX

dy
= A(y)X (B 3)

with the ‘initial’ condition

X (0) = In, (B 4)

where In is the n × n identity matrix. The monodromy matrix is equal to X (ω). If
the multiplicity of an eigenvalue ρν0

is equal to 1, then the function fν0
(y) in (B 2)

is periodic with period ω. For ρν0
with multiplicity r > 1 there exist r linearly

independent functions f(k)
ν0

(y), k = 1, . . . , r, one of which is periodic and the others
have the form

r∑
m=1

ymgm(y),

where gm(y) are periodic functions with period ω. The solutions (B 2) coincide at
y = 0 with the eigenvectors bν of the monodromy matrix, i.e.

xν(0) = bν . (B 5)

If the modulus of a multiplicator ρν0
is equal to unity and hence Re αν0

= 0, then at
least one bounded solution (B 2) corresponds to ρν0

.
To analyse the eigenvalue problem (2.7a, b) we rewrite the system in the form (B 1)

for the vector

x =

 ψ1

ψ2

ψ3

ψ4

 , ψ3 = ψ′1, ψ4 = ψ′2. (B 6)
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For given k, σ, δ, and q we calculated on a computer the monodromy matrix using
(B 3) and (B 4) and obtained the corresponding multiplicators ρν . If at least one of
these multiplicators ρν , say, ρν0

has a unit modulus, then at least one bounded solution
(B 2) corresponds to ρν0

, and therefore the given k, σ, δ, and q are the eigenvalues of
the problem (2.7a, b). The corresponding eigenfunction xν0

is found by solving (B 1)
for the initial condition

xν0
(0) = bν0

. (B 7)

If the multiplicity of ρν0
is equal to 1, then the solution xν0

is bounded for −∞ < y <
+∞. If the multiplicity of ρν0

exceeds 1, then one should choose the eigenvector bν0

corresponding to the periodic function fν0
(y) in (B 2). Due to the periodicity of fν0

(y)
the function xν0

(y) is completely determined by its behaviour on the interval (0, ω).
For |ρν0

| = 1 we have αν0
= (i/ω) arcsin (Im ρν0

), and therefore one can find the
wavenumber l̄ν0

along y-axis by the formula

l̄ν0
=

1

ω
arcsin (Im ρν0

). (B 8)

Knowing αν0
and xν0

(y) we can determine the bounded solution in the form (6.3).
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